Least-Cost Energy Paths for South Africa: Technology Options

Presented by: Gregory Ireland - MSc Eng, BSc Eng (Hons)

Energy Systems Research Group – University of Cape Town

Previously: Eskom Generation Plant Engineering – Systems Integration

Contact: irelandgregory@gmail.com

Presentation Outline:

South Africa's renewable energy and mineral resources

Global cost's of solar and wind RE technologies

Performance and optimisation of a high penetration of renewable energy in South Africa

Opportunities for spatial distribution of RE in South Africa

Conclusions and future work

A different resource endowment...?

Solar PV Production Potential Comparison of a typical solar PV project in South Africa (left) compared to the same project in Germany (right) Source: SolarGIS 2017

Roughly 40GW of both PV and Wind in Germany:

almost equal to South African peak generating capacity and 1 third of entire African continent!

...and for wind as well

Wind Speed Averages Comparison across South Africa (left) compared to Germany (right). Source: WASA 2015; CSIR & Fraunhofer 2016

Roughly 40GW of both PV and Wind in Germany:

almost equal to entire South African peak generating capacity and 1 third of entire African continent!

But Also other "Conventional" Mineral Resources...

South Africa has many critical minerals and elements for low carbon technologies: storage, wind turbines, electrolysers, and fuel cells:

90%+ of global Platinum reserves

- Ranked 1st, 2nd, or 3rd in total global resources for:
 - Manganese, chromium, nickel, vanadium, titanium, gold, fluorite also have some cobalt and copper

A more valuable future resource endowment with global potential?

- Strong opportunities for local beneficiation, manufacturing, international trade co-operation, and technology exchange
- How do we make use of these resources with minimum environmental impact and maximum equitable benefit?

A future energy resource OPEC?

(China, South Africa, DR Congo, Chile, Zimbabwe, Australia, Russia – together hold almost all of the above resources)

Conventional <u>Electricity</u> Generating Technologies

- Coal and Nuclear are <u>not</u> least-cost new electricity generation options in South Africa
- Imported Hydro power from Inga III (DRC) is not a least-cost option
 - Numerous other issues beyond cost: Non-transparent procurement, extensive HVDC transmission line through multiple countries over unelectrified populations, planned 60 year operation in rapidly changing world and inconsistent political situation
- Nearly all centralised complex megaprojects have a tendency for time and cost overruns

Global Cost of Solar PV: 2015 - South Africa is a world leader... 2018 – The world already moves on...

Unsubsidized Solar PV LCOE

Similar, but less drastic for wind...

8.

Challenges and Solutions for Modern Variable <u>Wind and Solar Renewable Energy Options</u>

"Diluteness" Challenge...

- Wind and solar are abundant, but spread over large areas
- "Variability" Challenge ...
- They are "non-dispatchable" in isolation, and dependent on weather patterns

Several Solutions:

Combine multiple complimentary energy resources and technologies into an optimized energy mix...

- Solar, wind and hydro, with favourable daily and seasonal patterns and geographic distribution
- Backup "firm" flexible thermal generation (fossil or renewable)
- Flexible demand, fuel switching, regional transmission links
- Energy Storage:
 - Batteries: ideal for short term daily storage
 - Pumped Hydro ("and power-to-X"/hydrogen): Weekly/Seasonal Storage
 - Thermal energy storage

An optimal mix of new electricity generation sources in South Africa in 2050 using:

- High resolution hourly optimisation model with future very high penetration of variable renewables (2050 – no coal, imports, or nuclear)
- Existing RE generation profiles in SA (not spatially optimal)
- Using worst generation/demand match since start of REI4P in RSA (2016)
- Renewable and storage technology cost projections for 2050
- Imported LNG price: 13^{*} USD/mBtu
- All other technology costs: as in the draft IRP2018
- Conservative 15% dispatchable reserve margin

Performance of Renewable Energy Plants in South Africa

Wind and Solar PV Cost Curves

Based on: REI4P for starting point – Learning based on (NREL, 2017, IEA-Wind, 2017, Agora 2017, Fraunhofer 2015) Levelised costs are not used in the model - show above for indicative comparison

Storage Modelled as Lithium-Ion Batteries: *Energy and Power sized independently (GW/GWh)*

Electricity Demand in South Africa: (2010 to 2017)

Electricity Demand Profile of South Africa : 2010 to 2016 Source: Eskom

Looking at 2016 only...

Wind and Solar PV generation in RSA: 2015 to 2018

Hourly Solar and Wind Generation Output in RSA (Capacity Factors) - 2015 to 2017

Closer look at 2 weeks in May 2016... *Worst combination of wind, solar, and demand*

Hourly Solar and Wind Generation Output in RSA (Capacity Factors) - 2015 to 2017

Optimal Installed Capacity in 2050 - if no Coal, Hydro, or Nuclear

Worst Week in May 2050... Dispatchable generation is used

Date-Time : Hourly Resolution

Good week in January 2050: 100% Renewable – however excess is curtailed...

Date-Time : Hourly Resolution

Full year: Daily energy mix contributions

Annual Daily Timeseries

Total Blended Levelised Cost of Energy (2050)

Demand-Side Management: Flexible Demand and Demand Response in Electricity Systems

Flexible Demand System Definitions

- All SATIM model equations and technology functional specifications are implemented as in the standard TIMES modelling framework and can be found in the official IEA-ETSAP documentation (IEA-ETSAP, 2018).
- Flexible demands are modelled here as centrally controllable standard TIMES electrical storage devices
- Energy storage is "discharged" by reducing demand, and "charged" by increasing demand
- Given associated availability profiles to specify maximum up and down regulating power capacities ("negawatts"), and a total allowable time delay duration.

Scenarios Modelled in previous SATIM study

Three levels of electrical flexible demand penetration are modelled in this study: **Residential, Commercial, and Industrial** sectors are modelled

- 0% flexibility All electrical demands must provide the exact defined energy service demand profile. (Reference)
- 10% flexibility 10% of the peak electrical demand per sector are considered fully controllable and flexible including a maximum 4-hour delay – all total service demands must balance and be served within a day.
- > 20% flexibility –as above but with 20% of electrical demand per sector.

The total impacts and value are determined by the difference in total system costs between scenarios.

Differences in Installed Capacity per Technology

26.

Eskom Coal Plants in Central Basin Roughly 30GW

30.

10.8 GW of High Resource Wind above 35% capacity factor: *Close to Existing Coal, Pumped Storage & Transmission*

Marquard

Conclusions and future work...

South Africa has an abundant resource endowment

Renewable AND "conventional"...

Very high shares of variable renewable energy can be integrated into the South African electricity system

Understanding the long-term variability of wind and solar in South Africa is key for planning an optimal electricity system

The spatial distribution of new energy investments in South Africa is a critical area of ongoing work

Emerging solutions to investigate further for South Africa....

- Significantly more sector coupling
- Smart-grids and demand side management
- Concentrating Solar Power
- Hydrogen "Power-to-X"
 - Energy storage
 - "Green" liquid-fuels
 - Iron and Steel

Thank you!

We are open for collaboration and contributions for future work...

Presented by: Gregory Ireland - MSc Eng, BSc Eng (Hons)

Energy Systems Research Group – University of Cape Town

Previously: Eskom Generation Plant Engineering – Systems Integration

Contact: irelandgregory@gmail.com

Today in South Africa

<u>Coal and emissions intensive</u>

<u>Medium-Term...</u> in RSA ←-----→ <u>Transition Period</u>

The Future in South Africa •----- Decarbonised & modernised

